A result of Ibukiyama [3] implies that for every odd prime number \(p \), a curve \(C \) of genus 3 defined over \(\mathbb{F}_{p^2} \) exists which is maximal over \(\mathbb{F}_{p^2} \). This means that the number of rational points over \(\mathbb{F}_{p^2} \) on the curve satisfies
\[
\# C(\mathbb{F}_{p^2}) = p^2 + 1 + 6p.
\]
Ibukiyama’s proof is not constructive. There are several examples of maximal genus 3 curves (we will recall some here), but a general convenient method that for given \(p \) prime constructs one such curve over \(\mathbb{F}_{p^2} \) seems unknown.

Here are some examples; see [4]. The Dyck-Fermat curve given by \(x^4 + y^4 + z^4 = 0 \) is maximal over \(\mathbb{F}_{p^2} \), for every prime number \(p \equiv 3 \mod 4 \).

The hyperelliptic curve corresponding to \(y^2 = x^7 + 1 \) is maximal over \(\mathbb{F}_{p^2} \), for every prime number \(p \equiv 6 \mod 7 \).

The hyperelliptic curve corresponding to \(y^2 = (x - 2)(x^2 - 2)(x^4 - 4x^2 + 1) \) is maximal over \(\mathbb{F}_{p^2} \), for every prime number \(p \equiv 13 \mod 24 \).

Since the Dyck-Fermat curve yields an example over \(\mathbb{F}_{p^2} \) for all primes \(p \equiv 3 \mod 4 \), it seems natural to supplement this with examples which work for primes \(p \equiv 1 \mod 4 \).

Suppose \(p \) is an odd prime number. Take \(\lambda \) in an extension field of \(\mathbb{F}_p \) such that the elliptic curve \(E_\lambda \) given by \(y^2 = x(x - 1)(x - \lambda) \) is supersingular. It is known (see, e.g., [1, Prop. 2.2]) that this condition implies that \(\lambda \in \mathbb{F}_{p^2} \). Furthermore, by [5, Thm. V-4.1] \(E_\lambda \) is supersingular if and only if
\[
H_p(\lambda) := \sum_{i=0}^{m} \binom{m}{i}^2 \lambda^i = 0,
\]
in which \(m = (p - 1)/2 \). In particular, the polynomial \(H_p(x) \in \mathbb{F}_p[x] \) factors as a product of polynomials of degree at most 2.

Now suppose \(p \equiv 1 \mod 4 \). Then \(H_p(x) \) has no zeroes in \(\mathbb{F}_p \), since if \(\lambda \) were such a zero, then \(\# E_\lambda(\mathbb{F}_p) = p + 1 \equiv 2 \mod 4 \), contradicting the fact that \(E_\lambda(\mathbb{F}_p) \) contains a subgroup of order 4 generated by \((0,0)\) and \((1,0)\).
So if $p \equiv 1 \mod 4$ then $H_p(x)$ has $(p-1)/4$ pairs of zeroes $\lambda, \lambda' \in \mathbb{F}_{p^2}$.

For any such zero, consider the quadratic twist of E_λ defined as

$$E'_\lambda : (\lambda + 3)y^2 = x(x - 1)(x - \lambda).$$

We know from [1, Prop. 2.2] (see also [2,]]) that $\# E_\lambda(\mathbb{F}_{p^2}) = p^2 + 1 - 2p$.

Hence if $\lambda + 3$ is not a square in \mathbb{F}_{p^2}, then $\# E'_\lambda(\mathbb{F}_{p^2}) = p^2 + 1 + 2p$.

In this case, consider the genus 3 curve C_{λ} over \mathbb{F}_{p^2} given by

$$x^4 + y^4 + z^4 = (\lambda + 1)(x^2y^2 + y^2z^2 + z^2x^2).$$

From [2, Coroll. 12] we deduce $\# C_{\lambda}(\mathbb{F}_{p^2}) = p^2 + 1 + 6p$. So indeed this yields an explicit maximal curve of genus 3 over \mathbb{F}_{p^2}, provided a zero λ of $H_p(x)$ exists such that $\lambda + 3$ is not a square. This condition is equivalent to $H_p(x^2 - 3)$ having an irreducible factor of degree 4 in $\mathbb{F}_p[x]$ (namely, if μ is a zero of such a factor, then $\lambda := \mu^2 - 3 \in \mathbb{F}_{p^2}$ is a zero of $H_p(x)$ as desired).

In the following table, such a factor is given for each prime $p \equiv 1 \mod 4$ with $p < 50$. Given the factor $x^4 + ax^2 + b$, the corresponding λ is any root of $x^2 + (a + 6)x + 3a + b + 9 = 0$.

<table>
<thead>
<tr>
<th>Prime</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$x^4 + 3x^2 + 3$</td>
</tr>
<tr>
<td>13</td>
<td>$x^4 + x^2 + 2$</td>
</tr>
<tr>
<td>17</td>
<td>$x^4 + 10x^2 + 11$</td>
</tr>
<tr>
<td>29</td>
<td>$x^4 + 7x^2 + 15$</td>
</tr>
<tr>
<td>37</td>
<td>$x^4 + 17$</td>
</tr>
<tr>
<td>41</td>
<td>$x^4 + 2x^2 + 27$</td>
</tr>
</tbody>
</table>

Whether or not this method provides a maximal curve over \mathbb{F}_{p^2} for every prime p, I do not know. It works for all $p < 1000$, and the number of factors of degree 4 of $H_p(x^2 - 3)$ seems to be increasing. So I guess that indeed the method will work for all p.

References

