Wiman’s and Edge’s sextic attaining Serre’s bound II

Motoko Qiu Kawakita

Abstract. In 1970’s Goppa discovered algebro-geometric codes, where we need explicit curves with many rational points to construct good codes. Recently we found that the sextics, defined by Wiman in 1895 and by Edge in 1980, attain the Hasse–Weil–Serre bound over some finite fields of order \( p \), \( p^2 \) or \( p^3 \), for a prime number \( p \). For some sextics among them, we determined the precise condition on the finite field over which the sextics attain the Hasse–Weil–Serre bound. In addition we update 19 entries of genus 6 and 11 entries of genus 4 in manYPoints.org by computer search on these sextics.

1. Introduction

In 1970’s Goppa discovered algebro-geometric codes. We can construct good codes by explicit curves with many rational points by his theory. For a curve \( C \) over a finite field \( \mathbb{F}_q \) of genus \( g \), we have the Hasse–Weil bound

\[
\#C(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q},
\]

which is proved for elliptic curves by Hasse in 1933, and for all curves by Weil in 1941. Here we set \( p \) as a prime number and \( q \) as a power of \( p \), \( \mathbb{F}_q \) as a finite field with \( q \) elements. By a curve we mean a projective geometrically irreducible nonsingular algebraic curve.

After Goppa’s discovery, in 1983 Serre improved this bound in [13] as

\[
\#C(\mathbb{F}_q) \leq q + 1 + q\lfloor 2\sqrt{q} \rfloor
\]

where \( \lfloor \cdot \rfloor \) means round down. We call it Serre’s bound. A curve attains this bound have a very simple \( L \)-function as \((1 + \lfloor 2\sqrt{q} \rfloor T + qT^2)^g\).

A curve attaining the Hasse–Weil bound is called a maximal curve, and there are many interesting research on it; see [3], [4] and their references. However we do not know the property of a curve attaining Serre’s bound which is not maximal when the genus \( \geq 4 \). There are only a few examples of such curves; see [9], [10], [11].

In Section 2, we introduce Wiman’s sextic from [17], where the geometry was researched in [6]. We determine the condition on \( \mathbb{F}_p \) and \( \mathbb{F}_{p^2} \) over which it attains Serre’s bound, where we do it on \( \mathbb{F}_{p^2} \) in [10]. In Section 3, from [16] we introduce a family of Wiman’s sextic. We determine the condition on \( \mathbb{F}_p \), \( \mathbb{F}_{p^2} \) and \( \mathbb{F}_{p^3} \) over which it attains Serre’s bound when the coefficients of its defining equation are in

2010 Mathematics Subject Classification. Primary 11G20, 14G05; Secondary 14G50.

Key words and phrases. Algebro-geometric codes; Rational points; Serre’s bound.
We find 19 new curves of genus 6 with many rational points by computer search which can update many Points in [5]. In Section 4, we find Wiman’s sextics of genus 4 attaining Serre’s bound, where we determine the condition on \( \mathbb{F}_p \), \( \mathbb{F}_{p^2} \) and \( \mathbb{F}_{p^3} \) over which it attains the bound when the coefficients of its defining equation are in \( \mathbb{F}_p \). Also we find 11 new curves of genus 4 with many rational points. In Section 5, we find that Edge’s sextics attain Serre’s bound over \( \mathbb{F}_{p^2} \) and \( \mathbb{F}_{p^3} \) for some \( p \), where we find it attains Serre’s bound over \( \mathbb{F}_p \) in [10]. We also give a conjecture of the condition on \( \mathbb{F}_{p^2} \) over which it is maximal.

ACKNOWLEDGMENTS. I would like to thank Nils Bruin for his comment on the Jacobian decomposition of Edge’s sextic, Arnaldo Garcia and Takayuki Oda for encouraging me to continue this research. This research was partially supported by JST PRESTO program and JSPS Grant-in-Aid for Young Scientists (B) 25800090.

2. Wiman’s sextic

In 1896 Wiman introduced the sextic

\[
V: x^6 + y^6 + 1 + (x^2 + y^2 + 1)(x^4 + y^4 + 1) - 12x^2y^2 = 0
\]

in \([17]\). We call it Wiman’s sextic and we find it attains Serre’s bound. Even the result of Wiman’s sextic \( V \) is the special case of Wiman’s sextic \( W \) in Section 3, however this section will show author’s spirit to readers.

As preparation, we discuss about the conditions for elliptic curves attaining Serre’s bound. Afterward we consider the finite field \( \mathbb{F}_p \) as \( \mathbb{Z}/p \mathbb{Z} \), which is the residue classes of the integers modulo the ideal generated by a prime \( p \). Let \( p > 2 \) and \( E \) be an elliptic curve with Weierstrass equation

\[
E: y^2 = f(x),
\]

where \( f(x) \in \mathbb{F}_p[x] \) is a cubic polynomial with distinct roots. Set

\[
\overline{A} = \text{coefficient of } x^{p-1} \text{ in } f(x)^{(p-1)/2}.
\]

From Section V.4 of \([14]\), we have the next proposition.

**Proposition 1** ([14]). The number of rational points of \( E \) over \( \mathbb{F}_p \)

\[
#E(\mathbb{F}_p) \equiv 1 - \overline{A} \pmod{p},
\]

and \( E \) is supersingular if and only if

\[
\overline{A} \equiv 0 \pmod{p}.
\]

Note that Serre in \([13]\) proved the lower bound \( \#C(\mathbb{F}_q) \geq q + 1 - g[2\sqrt{q}] \), which we call Serre’s lower bound. We use it to prove our assertions afterwards. Now, we start to introduce our results.

**Theorem 2.** Let \( p \geq 17 \). \( E \) over \( \mathbb{F}_p \) attains Serre’s bound if and only if

\[
\overline{A} \equiv -[2\sqrt{p}] \pmod{p}.
\]

**Proof.** We start from the “if” part. By Proposition 1, \( E(\mathbb{F}_p) \equiv 1 - \overline{A} \equiv 1 + [2\sqrt{p}] \pmod{p} \). Here \( p + 1 - [2\sqrt{p}] \leq E(\mathbb{F}_p) \leq p + 1 + [2\sqrt{p}] \) from Serre’s bounds. Since \( p \geq 17 \), we have \( 1 + [2\sqrt{p}] < p + 1 - [2\sqrt{p}] \). Hence \( E(\mathbb{F}_p) \neq 1 + [2\sqrt{p}] \), which means \( E(\mathbb{F}_p) = p + 1 + [2\sqrt{p}] \).

Next we prove the “only if” part. By the assumption, \( E(\mathbb{F}_p) = p + 1 + [2\sqrt{p}] \). Because \( E(\mathbb{F}_p) \equiv 1 - \overline{A} \pmod{p} \), we obtain that \( \overline{A} \equiv -[2\sqrt{p}] \pmod{p} \). □
At this point we introduce an elementary lemma, where we require it to prove
the next theorem. Let \( \mathbb{R} \) be a field of real numbers.

**Lemma 3.** Let \( p \geq 11 \), and \( h(x) = -x^3 + 3px \) be a polynomial in \( \mathbb{R}[x] \). Then
\( h(x) = [2p\sqrt{p}] \) has 3 roots in \( \mathbb{R} \). They are \( \omega_1, \omega_2, \omega_3 \) with \( \omega_1 < -[2\sqrt{p}] \) and
\( 0 < \omega_2 < \sqrt{p} < \omega_3 < \sqrt{p} + 0.3 \).

**Proof.** Write the graphs of \( y = h(x) \) and \( y = [2p\sqrt{p}] \) on a \( xy \)-plane. Since
\( h(-[2\sqrt{p}]) = [2\sqrt{p}]^3 - 3p[2\sqrt{p}] < 4p[2\sqrt{p}] - 3p[2\sqrt{p}] = p[2\sqrt{p}] < [2p\sqrt{p}] \), one
root of \( h(x) = [2p\sqrt{p}] \) is less than \([2\sqrt{p}]\). Because \((\sqrt{p}, 2p\sqrt{p})\) is a local maximum
of \( y = h(x) \), there are two roots near \( \sqrt{p} \). \( \square \)

For \( \overline{A} \in \mathbb{F}_p \), set \( A \) as the integer such that \( \overline{A} \equiv A \mod p \) and \( 0 \leq A < p \)
throughout this article.

**Theorem 4.** Let \( p \geq 11 \). With this notation, \( E \) over \( \mathbb{F}_p \) attains Serre’s bound
if and only if
\[ A^3 - 3pA = -[2p\sqrt{p}] \]

**Proof.** The Zeta function of the elliptic curve \( E \) over \( \mathbb{F}_p \) is given by
\[ Z(T) = \frac{(1-\alpha T)(1-\beta T)}{(1-T)(1-pT)} \]
Since \( \#E(\mathbb{F}_p) = p+1-\alpha - \beta \), we have that \( \alpha + \beta = \overline{A} \equiv A \mod (p) \) by Proposition 1.
By Serre’s bounds for \( E \), we have that \( \alpha + \beta \) should be either \( A - p, A \) or \( A + p \).
Suppose \( \alpha + \beta = A - p \). Then \( \#E(\mathbb{F}_p) = 1 - A \leq 1 - p + 1 - [2\sqrt{p}] \) since \( A \geq 0 \),
which gives us a contradiction. So \( \alpha + \beta \neq A + p \).

Now we prove the “only if” part. \( \#E(\mathbb{F}_p) = p^3 + 1 + [2p\sqrt{p}] \) by the assumption.
Because \( \#E(\mathbb{F}_p) = p^3 + 1 - \alpha^3 - \beta^3 \), we have that \( -\alpha^3 - \beta^3 = [2p\sqrt{p}] \). Hence
\( \alpha \beta = p \) implies that \( -(\alpha + \beta)^3 + 3p(\alpha + \beta) = [2p\sqrt{p}] \). Then \( \alpha + \beta \) should be
a root of \( -x^3 + 3px = [2p\sqrt{p}] \). Suppose that \( \alpha + \beta = A - p \). Since \( A < p \),
we have \( \alpha + \beta < 0 \). Thus \( \alpha + \beta < -[2\sqrt{p}] \) from the above lemma. It means that
\( \#E(\mathbb{F}_p) > p^3 + 1 + [2\sqrt{p}] \), which gives us a contradiction to Serre’s bound. Therefore
we have \( \alpha + \beta = A \), which means that \( -A^3 + 3pA = [2p\sqrt{p}] \).

Next we prove the “if” part. Suppose \( \alpha + \beta = A - p \). By the above lemma,
we know that \( A < \sqrt{p} + 0.3 \) when \( p \geq 11 \), hence we have that \( \alpha + \beta < -2\sqrt{p} \).
Thus \( \#E(\mathbb{F}_p) = p + 1 - \alpha - \beta > p + 1 + 2\sqrt{p} \), which gives us a contradiction
to Serre’s bound. Therefore we have \( \alpha + \beta = A \), which means that \( \#E(\mathbb{F}_p) = p^3 + 1 - A^3 + 3pA = p^3 + 1 + [2p\sqrt{p}] \). \( \square \)

Now we come back to Wiman’s sextic. Set \( p > 5 \) afterward in this section. We
introduce its Jacobian decomposition from [10]. Let \( J_C \) be the Jacobian variety of
a curve \( C \), and \( k \) be a field of characteristic \( p \).

**Proposition 5.** [10] The Jacobian variety of Wiman’s sextic \( V \) over a field \( k \)
decomposes completely as
\[ J_V \sim E_0^6 \]
where the elliptic curve is defined by \( E_0: y^2 = x(5x^2 - 95x + 2)^9 \).

Similarly as Corollary 12, the following corollary is immediate.

**Corollary 6.** \( \#V(\mathbb{F}_q) = 6\#E_0(\mathbb{F}_q) - 5q - 5 \).
Set $m = (p-1)/2$, and the coefficient of $x^m$ in $(5x^2 - 95x + 2^9)^m$ by $A_0$. From [10] we know that

$$A_0 = \sum_{i=0}^{\left\lfloor \frac{m}{2} \right\rfloor} \frac{m!}{(i!)^2(m-2i)!} \cdot 2^{9i} \cdot 5^{m-i} \cdot (-19)^{m-2i}.$$ 

Theorem 2 together with Corollary 6 gives the following result.

**Theorem 7.** Let $p \geq 17$. Wiman’s sextic $V$ over $\mathbb{F}_p$ attains Serre’s bound if and only if

$$A_0 \equiv -\lfloor 2\sqrt{p} \rfloor \pmod{p}.$$ 

Note that 5393, 10019609, 11926193, 14162263, 22861687, etc satisfy the condition of the theorem, where only the first one was introduced in [10] as a result of computer search on Wiman’s sextic $V$.

The following theorem is obtained by Theorem 4 and Corollary 6.

**Theorem 8.** Let $p \geq 11$. Wiman’s sextic $V$ over $\mathbb{F}_p^3$ attains Serre’s bound if and only if

$$A_0^3 - 3pA_0 = -\lfloor 2p\sqrt{p} \rfloor.$$ 

Note that 67, 28909, 61487, 1721371, 48052531, etc satisfy the condition of the above theorem, where only the first one was introduced in [10] as a result of computer search on Wiman’s sextic $V$.

### 3. Wiman’s sextic II

In 1895, Wiman in [16] defined the sextic

$$W: x^6 + y^6 + 1 + a(x^4y^2 + x^2y^4 + x^4 + x^4 + y^4 + y^4) + bx^2y^2 = 0.$$ 

When $a = 1/2$ and $b = -6$, it is isomorphic to Wiman’s sextic $V$ in Section 2. 

Remark that Theorem B of Kani and Rosen in [7] plays an important role when we decompose a Jacobian variety of a curve in this article. We sometimes use the next corollary which follows directly from Theorem B.

**Corollary 9.** [12] Let $C$ be a curve, $\sigma, \tau \in Aut(C)$ where $\sigma \neq \tau$, $\sigma\tau = \tau\sigma$, $|\sigma| = |\tau| = |\sigma\tau| = 2$. Then we have the isogeny relation

$$J_C \times J_{C/\langle \sigma, \tau \rangle} \sim J_{C/\langle \sigma \rangle} \times J_{C/\langle \tau \rangle} \times J_{C/\langle \sigma\tau \rangle}.$$ 

Set $p > 5$ in this section.

**Proposition 10.** The Jacobian variety of Wiman’s sextic $W$ over a field $k$ have the following isogeny relation

$$J_W \sim H_1^3 \times H_2 \times J_{H_3}^3,$$

where the curves are defined by

- $H_1: y^2 = ((3a - b - 3)x - a + 3)(1 + (a - 3)x(1 - x))$,
- $H_2: x^3 + y^3 + 1 + a(x^2y + xy^2 + x^2 + x + y^2 + y) + bx^2y = 0$,
- $H_3: y^2 = -((a + 1)x^3 + (2a + b)x^2 + 4ax + 4)(x^3 + ax^2 + ax + 1)$.
Proof. The automorphism group of the sextic $W$ contains $\iota: (x, y) \mapsto (-x, y)$ and $\rho: (x, y) \mapsto (x, -y)$. From Corollary 9, we have the following isogeny relation

$$J_W \times J_{W/(\iota, \rho)} \sim J_{W/\langle \iota \rangle} \times J_{W/\langle \rho \rangle} \times J_{W/(\iota, \rho)},$$

while $W/(\iota)$, $W/(\rho)$ and $W/(\iota, \rho)$ are birational to $H : x^3 + y^6 + 1 + a(x^2y^2 + xy^4 + x^2 + x + y^2) + bxy^2 = 0$.

Here an explicit map $W \to H_2$ is given by $(x, y) \mapsto (x^2, y^2)$, hence $W/(\iota, \rho)$ is birational to $H_2$. Therefore we have that $J_W \times H_2^2 \sim J_H^2$.

Since $\sigma: (x, y) \mapsto (x/y^2, 1/y)$ and $\tau: (x, y) \mapsto (x, -y)$ are automorphisms of $H$, from Corollary 9 we have that

$$J_H \times J_{H/(\sigma, \tau)} \sim J_{H/(\sigma)} \times J_{H/(\tau)} \times J_{H/(\sigma \tau)}.$$ 

Now an explicit quotient map $H \to H/(\sigma)$ is given by

$$(x, y) \mapsto (x/y, y + 1/y),$$

where we have that

$$H/(\sigma): (1-a)(x^3 + y^3 - 3y) + a(x+y)(x^2 + y^2 - 2) + bx = 0.$$ 

An explicit quotient map $H \to H/(\sigma \tau)$ is given by

$$(x, y) \mapsto (x + x/y^2, y - 1/y),$$

where we have that $H/(\sigma \tau)$ is defined by

$$(1-a)(x^3 + (y^2 + 1)(y^2 + 4)) + a(x + y^2 + 4)(x^2 + (y^2 + 2)(y^2 + 4)) + bx(y^2 + 4) = 0.$$ 

After transformation on their defining equations, we yield that $H/(\sigma)$ and $H/(\sigma \tau)$ are birational to $H_1$ and $H_3$ respectively. Since the genus of $H/(\sigma, \tau)$ is 0 and $H/(\langle \tau \rangle)$ is isomorphic to $H_2$, we have

$$J_H \sim H_1 \times H_2 \times J_{H_3}.$$ 

Thus we have the isogeny relation $J_W \times H_2^2 \sim H_1^2 \times H_3^2 \times J_{H_3}^3$, and this proves the assertion. \hfill \Box

Afterward, set $b = -6a - 3$ and $a(a - 3)(a + 1)(2a + 3) \neq 0$ throughout this section. The following theorem is obtained directly.

Theorem 11. The Jacobian variety of Wiman’s sextic $W$ over a field $k$ has the following isogeny relation

$$J_W \sim E_1^3 \times E_2^3,$$

where the elliptic curves are defined by $E_1: y^2 = xf_1(x)$ and $E_2: y^2 = xf_2(x)$ with

$$f_1(x) = x^2 + (a - 3)(7a + 6)x - (a - 3)(2a + 3)^3,$$

$$f_2(x) = x^2 - (a - 3)(a + 2)x - (a - 3)(2a + 3).$$

Proof. Since $b = -6a - 3$, the point $(1, 1)$ on $H_2$ is a singular point. Thus the genus of $H_2$ is 0. $H_1$ and $H_3$ in Proposition 10 are birational to $E_1$ and $E_2$ respectively. Hence we have $J_W \sim E_1^3 \times E_2^3$. Moreover, $E_1$ and $E_2$ are nonsingular when $a(a - 3)(a + 1)(2a + 3) \neq 0$. \hfill \Box

Remark that Wiman’s sextic $V$ in Section 2 is a case when $E_1$ and $E_2$ are isogenous.

Corollary 12. If $b = -6a - 3$ then $\#W(F_q) = 3\#E_1(F_q) + 3\#E_2(F_q) - 5q - 5$. 

Proof. It is well known that \( \# W(F_p) = q + 1 - t \), where \( t \) is the trace of Frobenius acting on a Tate module of \( J_W \). Theorem 11 implies that this Tate module is isomorphic to a direct sum of three copies of the Tate module of \( E_1 \) and \( E_2 \). Hence \( t = 3t_1 + 3t_2 \), where \( t_1, t_2 \) are the trace of Frobenius on the Tate module of \( E_1 \) and \( E_2 \) respectively. Since \( t_1 = q + 1 - \# E_1(F_q) \) and \( t_2 = q + 1 - \# E_2(F_q) \), the result follows. \( \square \)

Note that the \( j \)-invariants of \( E_1 \) and \( E_2 \) are respectively
\[
\frac{2^8(73a^3 + 45a^2 - 54a - 27)^3}{3^4a^2(a + 1)(2a + 3)^6}, \quad \frac{2^8(a^3 + a^2 - 2a - 3)^3}{a^2(a + 1)(2a + 3)^2}.
\]

Denote the coefficients of \( x^m \) in \( f_1(x)^m \) and \( f_2(x)^m \) by \( \overline{A}_1 \) and \( \overline{A}_2 \) respectively, which means that
\[
\overline{A}_1 = \sum_{i=0}^{[\frac{1}{2}]} \frac{m!}{(i!)^2(2a + 3)^i}(-1)^i(a - 3)^{-i}(7a + 6)^{m-2i}(2a + 3)^3i,
\]
\[
\overline{A}_2 = \sum_{i=0}^{[\frac{1}{2}]} \frac{m!}{(i!)^2(2a + 3)^i}(-1)^i(a - 3)^{m-2i}(a + 2)^{m-2i}(2a + 3)^i.
\]

**Theorem 13.** Let \( p \geq 17 \). Wiman’s sextic \( W \) over \( F_p \) attains Serre’s bound if and only if
\[
\overline{A}_1 \equiv \overline{A}_2 \equiv -[2\sqrt{p}] \pmod{p}.
\]

**Proof.** Since we have the isogeny relation \( J_W \sim E_1^3 \times E_2^3 \), Wiman’s sextic \( W \) over \( F_p \) attains Serre’s bound if and only if both \( E_1 \) and \( E_2 \) do it by Corollary 12. By Theorem 2 we can prove the condition for \( E_1 \) and \( E_2 \). \( \square \)

Note that the pairs \((p, a)\) satisfying these conditions are \((503, 104)\), \((1873, 1026)\), \((2069, 907)\), \((2437, 1009)\), \((5393, 2697)\), \((6131, 2638)\), \((7309, 4030)\), \((8369, 6752)\), etc.

Next we determine the conditions of Wiman’s sextic to be maximal, which is defined in the introduction.

**Theorem 14.** Let \( a \in F_p \). Wiman’s sextic \( W \) is maximal over \( F_{p^2} \) if and only if
\[
\overline{A}_1 \equiv \overline{A}_2 \equiv 0 \pmod{p}.
\]

**Proof.** Wiman’s sextic \( W \) over \( F_{p^2} \) is maximal if and only if both \( E_1 \) and \( E_2 \) are maximal by Corollary 12. From Proposition 1, the elliptic curves \( E_1 \) and \( E_2 \) over \( F_p \) are supersingular if and only if the coefficients of \( x^m \) in \( f_1(x)^m \) and \( f_2(x)^m \) are zero. Hence we can prove it by the definitions of \( \overline{A}_1 \) and \( \overline{A}_2 \). \( \square \)

Note that \((p, a)\) satisfying these conditions are \((11, 9)\), \((17, 8)\), \((19, 10)\), \((23, 7)\), \((29, 5)\), \((31, 4)\), \((41, 15)\), \((47, 34)\), \((59, 34)\), \((71, 7)\), \((79, 1)\), \((83, 30)\), etc.

**Theorem 15.** Let \( p \geq 11 \) and \( a \in F_p \). Wiman’s sextic \( W \) over \( F_{p^3} \) attains Serre’s bound if and only if
\[
A_1^3 - 3pA_1 = A_2^3 - 3pA_2 = -[2p\sqrt{p}]\).
\]

**Proof.** \( W \) over \( F_{p^3} \) attains Serre’s bound if and only if both elliptic curves \( E_1 \) and \( E_2 \) do it by Corollary 12. Theorem 4 gives the condition for \( E_1 \) and \( E_2 \). \( \square \)
Note that \((p, a)\) satisfying these conditions are \((67, 34), (97, 35), (101, 22), (103, 100), (193, 101), (673, 340), (677, 40), (787, 98), (1153, 57), (1607, 467), \) etc.

Here, we find new curves of genus 6 by computer search on Wiman’s sextic \(W\) using MAGMA computational algebra system. Table 1 is the results of \(W\) over \(F_p\).

<table>
<thead>
<tr>
<th>(F_p)</th>
<th>((a, b))</th>
<th>#(W(F_p))</th>
<th>old entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>(1, 8)</td>
<td>54</td>
<td>-60</td>
</tr>
<tr>
<td>29</td>
<td>(6, 19)</td>
<td>78</td>
<td>-90</td>
</tr>
<tr>
<td>37</td>
<td>(35, 9)</td>
<td>86</td>
<td>80 – 104</td>
</tr>
<tr>
<td>41</td>
<td>(35, 33)</td>
<td>102</td>
<td>90 – 114</td>
</tr>
<tr>
<td>47</td>
<td>(18, 30)</td>
<td>120</td>
<td>90 – 126</td>
</tr>
<tr>
<td>59</td>
<td>(21, 48)</td>
<td>132</td>
<td>120 – 150</td>
</tr>
<tr>
<td>61</td>
<td>(38, 13)</td>
<td>134</td>
<td>110 – 152</td>
</tr>
<tr>
<td>73</td>
<td>(34, 12)</td>
<td>170</td>
<td>140 – 174</td>
</tr>
<tr>
<td>79</td>
<td>(57, 50)</td>
<td>176</td>
<td>170 – 182</td>
</tr>
<tr>
<td>89</td>
<td>(79, 57)</td>
<td>186</td>
<td>150 – 198</td>
</tr>
</tbody>
</table>

Table 1. \(W\) with many points over \(F_p\)

When \(b = -6a - 3\), we implement Corollary 12 by MAGMA, where Table 2 is our results. For example, \(W\) over \(F_{7^3}\) has 512 rational points when \(a = \beta_{81}\) where \(\beta\) is a root of \(u^3 + 6u^2 + 4 = 0\) in \(F_{7^3}\) and \(b = -6a - 3\). Here the best known lower bound is 500 and the upper bound is 564 in [5].

<table>
<thead>
<tr>
<th>(F_q)</th>
<th>(a)</th>
<th>primitive poly.</th>
<th>#(W(F_q))</th>
<th>old entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7^2)</td>
<td>4</td>
<td>110</td>
<td>-134</td>
<td></td>
</tr>
<tr>
<td>(11^2)</td>
<td>9</td>
<td>254</td>
<td>230 – 254</td>
<td></td>
</tr>
<tr>
<td>(7^3)</td>
<td>(\beta_{81})</td>
<td>(u^3 + 6u^2 + 4)</td>
<td>512</td>
<td>500 – 564</td>
</tr>
<tr>
<td>(11^3)</td>
<td>(\beta_{157})</td>
<td>(u^3 + 2u + 9)</td>
<td>1716</td>
<td>1680 – 1764</td>
</tr>
<tr>
<td>(13^3)</td>
<td>(\beta_{125})</td>
<td>(u^3 + 2u + 11)</td>
<td>2714</td>
<td>2690 – 2756</td>
</tr>
<tr>
<td>(11^5)</td>
<td>(\beta_{6525})</td>
<td>(u^5 + 10u^2 + 9)</td>
<td>165756</td>
<td>165720 – 165864</td>
</tr>
<tr>
<td>(13^5)</td>
<td>2</td>
<td>378506</td>
<td>-378602</td>
<td></td>
</tr>
<tr>
<td>(17^5)</td>
<td>(\beta_{11551})</td>
<td>(u^5 + u + 14)</td>
<td>1434006</td>
<td>-1434156</td>
</tr>
<tr>
<td>(19^5)</td>
<td>(\beta_{99200})</td>
<td>(u^5 + 5u + 17)</td>
<td>2494688</td>
<td>-2494982</td>
</tr>
</tbody>
</table>

Table 2. \(W\) with many points over \(F_q\) when \(b = -6a - 3\)

4. Wiman’s sextic of genus 4

We research on Wiman’s sextic \(W\) for \(a = -1, 3\), where we exclude them in Section 3. Set \(p > 3\) in this section.

**Theorem 16.** Let \(a = -1\) and \(b \neq -6, -2, 2, 3\). The Jacobian variety of Wiman’s sextic \(W\) over a field \(k\) have the following isogeny relation

\[
J_W \sim E_3 \times E_4^3,
\]
where the elliptic curves are defined by $E_3: y^2 = x f_3(x)$ and $E_4: y^2 = x f_4(x)$ with

$f_3(x) = x^2 - 2(b + 2)^2(b + 6)^2(b^2 - 12)x + (b - 2)^3(b + 2)^4(b + 6)^3$,

$f_4(x) = x^2 + 2bx + (b - 2)(b + 6)$.

**Proof.** From Proposition 10, when $a = -1$, the Jacobian variety of Wiman’s sextic $W$ over a field $k$ have the following isogeny relation

$J_W \sim H_2 \times H_3^3$,

where we have $H_2: x^3 + y^3 + 1 = (x^2y + xy^2 + x^2 + x + y^2 + y) + bxy = 0$ and $H_3: y^2 = -(b - 2)x^2 - 4x + 4)(x + 1)$. Actually, $H_2$ and $H_3$ are birational to $E_3$ and $E_4$ respectively, and $E_3$ and $E_4$ are nonsingular when $b \neq -6, -2, 2, 3$. 

Similarly as Corollary 12, the following corollary is immediate.

**Corollary 17.** If $a = -1$ then $\#W(F_q) = \#E_3(F_q) + 3\#E_4(F_q) - 3q - 3$.

Note that the $j$-invariants of $E_3$ and $E_4$ are respectively

$-\frac{(b - 6)^3(2b^3 + 12b - 120)^3}{(b - 2)^6(b - 3)(b + 6)^2}$, $-\frac{2^4(b - 6)^6}{(b - 2)^2(b - 3)(b + 6)^2}$.

Denote the coefficients of $x^m$ in $f_3(x)^m$ and $f_4(x)^m$ by $\overline{A}_3$ and $\overline{A}_4$ respectively, which means that

$\overline{A}_3 = (b + 2)^2 \sum_{i=0}^{\frac{2m}{3}} \frac{m!}{(i!)^2(m - 2i)!}(-2(b^2 - 12))^{m-2i}(b - 2)^{3i}(b + 6)^{2m+3i}$,

$\overline{A}_4 = \sum_{i=0}^{\frac{2m}{3}} \frac{m!}{(i!)^2(m - 2i)!}(2b)^{-2i}(b - 2)^{3i}(b + 6)^{3i}$.

**Theorem 18.** Let $a = -1$ and $b \in F_p\setminus\{-6, -2, 2, 3\}$. The following hold for Wiman’s sextic $W$.

(i) Let $p \geq 17$. $W$ over $F_p$ attains Serre’s bound if and only if

$\overline{A}_3 \equiv \overline{A}_4 \equiv -[2\sqrt{b}] \pmod{p}$.

(ii) $W$ over $F_{p^2}$ is maximal if and only if

$\overline{A}_3 \equiv \overline{A}_4 \equiv 0 \pmod{p}$.

(iii) Let $p \geq 11$. $W$ over $F_{p^3}$ attains Serre’s bound if and only if

$A_3^3 - 3pA_3 = A_4^4 - 3pA_4 = -[2p\sqrt{b}]$.

**Proof.** We can prove (i), (ii) and (iii) similarly as Theorem 13, 14 and 15 respectively.

Note that the pairs $(p, b) = (541, 6), (853, 6), (1237, 6), (1693, 6), (2221, 6), (2857, 6), (3529, 6), (4273, 6), (7933, 6), (9311, 2982), etc satisfy the condition of (i) in the above theorem. The pairs $(p, b) = (5, 1), (11, 0), (17, 6), (23, 0), (29, 6), (41, 6), (47, 0), (53, 6), (59, 0), (71, 0), (83, 0), etc satisfy the condition of (ii). The pairs $(p, b) = (61, 5), (67, 19), (193, 1), (199, 82), (397, 66), (673, 51), etc satisfy the condition of (iii).

When $a = -1$ and $b = 6$, Wiman’s sextic $W$ have an interesting relation with the quotient curve of the Fermat curve in [9]. Let the elliptic curves $E_3: y^2 = x^3 + 1$ and $E_6: y^2 = x^3 - 1$ over a field $k$.  

Proposition 19. [9] Consider the curve $C$: $y^6 = x^2(4 - 4x^2)$.

(i) The Jacobian variety of $C$ over $k$ have the following isogeny relation

$$J_C \sim E_3^2 \times E_0.$$ 

(ii) The curve $C$ over $\mathbb{F}_p$ attains Serre’s bound if and only if $p \equiv 1 \pmod{12}$,

$$[\sqrt{p}] \equiv 2 \pmod{3}, \quad [2\sqrt{p}] \equiv 1 \pmod{3}$$

and there is an integer $n$ such that $p = [\sqrt{p}]^2 + 3n^2$.

Theorem 20. Let $a = -1$ and $b = 6$. The following hold for Wiman’s sextic $W$.

(i) The Jacobian variety of $W$ over a field $k$ have the following isogeny relation

$$J_W \sim E_5 \times E_6^3.$$ 

(ii) $W$ over a finite field $\mathbb{F}_p$ attains Serre’s bound if and only if $p \equiv 1 \pmod{12}$,

$$[\sqrt{p}] \equiv 2 \pmod{3}, \quad [2\sqrt{p}] \equiv 1 \pmod{3}$$

and there is an integer $n$ such that $p = [\sqrt{p}]^2 + 3n^2$.

(iii) $W$ over $\mathbb{F}_{p^2}$ is maximal if and only if $p \equiv 2 \pmod{3}$.

Proof. (i) Since $E_3$ and $E_4$ are isogeneous to $E_5$ and $E_6$ respectively, it follows from Theorem 16.

(ii) Using (i), we can prove it by the same method as the proof of (ii) of the above proposition in [9].

(iii) From Example 4.4 in Chapter V of [14], $E_5$ over $\mathbb{F}_{p^2}$ is maximal if and only if $p \equiv 2 \pmod{3}$. By the same method, this condition also holds for $E_6$. Therefore the result follows from (i).

Note that the prime numbers 541, 853, 1237, 1693, 2221, 2857, 3529, 4273, 7933, 11497, etc satisfy the condition in (ii) of the above theorem.

Theorem 21. Let $a = 3$ and $b \neq -21, 6$. The Jacobian variety of Wiman’s sextic $W$ over a field $k$ have the following isogeny relation

$$J_W \sim E_7 \times E_8^3,$$

where the elliptic curves are defined by $E_7$: $y^2 = f_7(x)$ and $E_8$: $y^2 = f_8(x)$ with

$$f_7(x) = x^3 - 3^3(b + 18)(b - 6)^3 x + 2 \cdot 3^3(b^2 + 24b + 36)(b - 6)^4,$$

$$f_8(x) = x^3 - (b - 6)x^2 - 2^2(b - 6)^2.$$ 

Proof. From Proposition 10, the Jacobian variety of Wiman’s sextic $W$ over a field $k$ have the following isogeny relation when $a = 3$.

$$J_W \sim H_2 \times H_3^3,$$

where we have that $H_2$: $x^3 + y^3 + 1 + 3(x^2y + xy^2 + x^2 + x + y^2 + y) + xy = 0$ and $H_3$: $y^2 = -(4x^3 + (b + 6)x^2 + 12x + 4)(x + 1)$. Actually, $H_2$ and $H_3$ are birational to $E_7$ and $E_8$ respectively, and $E_7$ and $E_8$ are non-singular when $b \neq -21, 6$.

Similarly as Corollary 12, the following corollary is immediate.

Corollary 22. If $a = 3$ then

$$\#W(\mathbb{F}_q) = \#E_7(\mathbb{F}_q) + 3\#E_8(\mathbb{F}_q) - 3q - 3.$$

Note that the $j$-invariants of $E_7$ and $E_8$ are respectively

$$\frac{(b - 6)(b + 18)^3}{b + 21}, \quad \frac{2^4(b - 6)^2}{b + 21}.$$
Denote the coefficients of $x^{p-1}$ in $f_7(x)^m$ and $f_8(x)^m$ by $\overline{A}_7$ and $\overline{A}_8$ respectively, which means that
\[
\overline{A}_7 = \sum_{i=\lceil \frac{p-1}{3} \rceil} \frac{m!}{i!(2i-m)!} \frac{(b-6)^{2m-3i}(b^2 + 24b + 36)^{2i-m}}{(m-3i)!},
\]
\[
\overline{A}_8 = \sum_{i=0}^{\lfloor \frac{p-1}{2} \rfloor} \frac{m!}{i!(2i)!} \frac{(b-6)^{m-2i}}{(m-3i)!}.
\]
Here $\lceil \cdot \rceil$ means round up.

**Theorem 23.** Let $a = 3$ and $b \in \mathbb{F}_p \setminus \{-21, 6\}$. The following hold for Wiman’s sextic $W$.

(i) Let $p \geq 17$. $W$ over $\mathbb{F}_p$ attains Serre’s bound if and only if $\overline{A}_7 \equiv A_8 \equiv -[2\sqrt{7}]$ (mod $p$).

(ii) $W$ over $\mathbb{F}_{p^2}$ is maximal if and only if $\overline{A}_7 \equiv A_8 \equiv 0$ (mod $p$).

(iii) Let $p \geq 11$. $W$ over $\mathbb{F}_{p^2}$ attains Serre’s bound if and only if $A_7^2 - 3pA_7 = A_8^2 - 3pA_8 = -[2p\sqrt{7}]$.

**Proof.** We can prove (i), (ii) and (iii) similarly as Theorem 13, Theorem 14 and Theorem 15 respectively. \(\square\)

Note that the pairs satisfy the condition in (i) of the above theorem are $(p, b) = (9311, 7969)$, $(13751, 1913)$, $(19181, 1245)$, $(23057, 9510)$, $(37243, 4693)$, etc. The pairs satisfy (ii) are $(p, b) = (11, 7)$, $(23, 21)$, $(29, 11)$, $(41, 17)$, $(47, 46)$, $(59, 11)$, $(71, 7)$, $(83, 35)$, etc. The pairs satisfy (iii) are $(p, b) = (11, 9)$, $(61, 17)$, $(67, 25)$, $(83, 41)$, $(193, 72)$, $(199, 192)$, $(397, 125)$, $(443, 62)$, etc. Here, we implement Corollary 17 and 22 by MAGMA, and find new curves of genus 4, which we list in Table 3. For example, $W$ over $\mathbb{F}_{p^2}$ has 198 rational points when $a = 3$ and $b = \beta^{11}$ where $\beta$ is a root of $u^3 + 3u + 3 = 0$ in $\mathbb{F}_{p^3}$. Here the best known lower bound is 196 and the upper bound is 211 in [5].

<table>
<thead>
<tr>
<th>$\mathbb{F}_q$</th>
<th>$(a, b)$</th>
<th>primitive poly.</th>
<th>$#W(\mathbb{F}_q)$</th>
<th>old entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5^4$</td>
<td>$(3, \beta^{11})$</td>
<td>$u^3 + 3u + 3$</td>
<td>198</td>
<td>196 – 211</td>
</tr>
<tr>
<td>$7^3$</td>
<td>$(\overline{-1}, 4)$</td>
<td></td>
<td>480</td>
<td>454 – 489</td>
</tr>
<tr>
<td>$11^3$</td>
<td>$(3, 9)$</td>
<td>$u^3 + 2u + 11$</td>
<td>2538</td>
<td>2510 – 2570</td>
</tr>
<tr>
<td>$13^3$</td>
<td>$(\overline{-1}, \beta^{357})$</td>
<td>$u^3 + u + 14$</td>
<td>5430</td>
<td>5414 – 5474</td>
</tr>
<tr>
<td>$17^3$</td>
<td>$(3, \beta^{596})$</td>
<td></td>
<td>7500</td>
<td>7470 – 7520</td>
</tr>
<tr>
<td>$19^3$</td>
<td>$(3, 11)$</td>
<td>$u^5 + u + 4$</td>
<td>17784</td>
<td>17780 – 17840</td>
</tr>
<tr>
<td>$7^5$</td>
<td>$(\overline{-1}, \beta^{3519})$</td>
<td>$u^5 + 10u^2 + 9$</td>
<td>164196</td>
<td>- 164260</td>
</tr>
<tr>
<td>$11^5$</td>
<td>$(\overline{-1}, \beta^{35534})$</td>
<td>$u^5 + 4u + 11$</td>
<td>376086</td>
<td>- 376166</td>
</tr>
<tr>
<td>$13^5$</td>
<td>$(3, \beta^{11241})$</td>
<td>$u^5 + 9u^2 + 9$</td>
<td>1429254</td>
<td>- 1429390</td>
</tr>
<tr>
<td>$17^5$</td>
<td>$(3, \beta^{273629})$</td>
<td>$u^5 + u + 14$</td>
<td>2488608</td>
<td>- 2488688</td>
</tr>
</tbody>
</table>

**Table 3.** $W$ of genus 4 with many points
5. Edge’s sextic

In 1980 Edge introduced a family of sextics in [2] to research on Wiman’s sextic $V$. It is defined by the following defining equation

\[ x^6 + y^6 + 1 + (x^2 + y^2 + 1)(x^4 + y^4 + 1) - 12x^2y^2 + \alpha(y^2 - 1)(1 - x^2)(x^2 - y^2) = 0. \]

We denote it by $G$, and call it Edge’s sextic; see also [1] for its geometrical properties. It is Wiman’s sextic $V$ in Section 2 when $\alpha = 0$.

Set $p > 3$ in this section.

**Proposition 24.** The Jacobian variety of Edge’s sextic over a field $k$ have the following isogeny relation

\[ J_G \sim J_D \times J_{D'}^2, \]

where $D : y^2 = h_\alpha(x)$ and $D' : y^2 = h_{-\alpha}(x)$ with

\[ h_\alpha(x) = (-6x^3 + (9 + \alpha)x^2 - (\alpha + 7)x + 2)(2x^3 + (1 + \alpha)x^2 + (1 - \alpha)x + 2). \]

**Proof.** We have $\sigma : (x, y) \mapsto (-x, y)$ and $\tau : (x, y) \mapsto (x, -y)$ as automorphisms of the sextic $G$. Applying Corollary 9 to $G$ we obtain that

\[ J_G \times J_{G/(\langle \sigma, \tau \rangle)} \sim J_{G/(\sigma)} \times J_{G/(\tau)} \times J_{G/(\sigma \tau)}. \]

Here $G/(\langle \sigma \rangle)$ is birational to

\[ x^3 + y^6 + 1 + (x + y^2 + 1)(x^2 + y^4 + 1) - 12xy^2 + \alpha(y^2 - 1)(1 - x)(x^2 - y^2) = 0. \]

After we set $y^2 = uX + 1$ and $x = X + 1$, we can denote this equation as

\[ X^2((2u^3 + (1 + \alpha)u^2 + (1 - \alpha)u + 2)X + 8(u^2 - u + 1)) = 0. \]

Since $y^2 = uX + 1$, we have that

\[ y^2 = 1 - 8u(u^2 - u + 1)/(2u^3 + (1 + \alpha)u^2 + (1 - \alpha)u + 2). \]

Therefore, it is birational to $D : y^2 = h_\alpha(x)$.

Similarly, we have that $G/(\langle \tau \rangle)$ and $G/(\langle \sigma \tau \rangle)$ are birational to $D'$. Since the genus of $G/(\langle \sigma, \tau \rangle)$ is 0, we can prove the assertion.

**Corollary 25.** $\#G(\mathbb{F}_q) = 3\#D(\mathbb{F}_q) - 2q - 2$.

**Proof.** It is well known that $\#G(\mathbb{F}_q) = q + 1 - t$, where $t$ is the trace of Frobenius acting on a Tate module of $J_G$. Theorem 24 implies that this Tate module is isomorphic to a direct sum of the Tate modules of $J_D$ and two copies of the Tate module of $J_{D'}$. Hence $t = t_1 + 2t_2$, where $t_1$ and $t_2$ are the traces of Frobenius on the Tate modules of $J_D$ and $J_{D'}$ respectively. Since we have $\#D(\mathbb{F}_q) = \#D'(\mathbb{F}_q)$, $t_1 = q + 1 - \#D(\mathbb{F}_q)$ and $t_2 = q + 1 - \#D'(\mathbb{F}_q)$, the result follows.

We implement Corollary 25 by KASH/KANT computational algebra system, and find maximal curves.

**Example 26.** Edge’s sextic $G$ is maximal over $\mathbb{F}_q$ for $(p, \alpha)$ is equal to $(19, 0)$, $(29, 0)$, $(59, 12)$, $(79, 0)$, $(109, \beta^{15})$ where $\beta$ is a root of $u^2 - u + 6 = 0$ in $\mathbb{F}_{109^2}$, $(139, 12)$, $(149, 33)$, $(179, 42)$, $(199, 0)$, etc.

Next, let

\[ h_\alpha(x)^m = \sum_{j=0}^{N} c_j(\alpha)x^j, \quad M(\alpha) = \begin{pmatrix} c_{p-1}(\alpha) & c_{p-2}(\alpha) \\ c_{2p-1}(\alpha) & c_{2p-2}(\alpha) \end{pmatrix}. \]

Here, $M(\alpha)^{(1/p)}$ is called the Hasse–Witt matrix of the curve $D$. 

Proposition 27. If Edge’s sextic $G$ over $\mathbb{F}_{p^2}$ is maximal then $M(\alpha) = 0$.

Proof. If $G$ is maximal then $D$ is maximal by Corollary 25. When $D$ is maximal, we can prove it by Theorem 4.1 of [15]. \hfill $\square$

Here, we have a conjecture.

Conjecture 28. Edge’s sextic $G$ over $\mathbb{F}_{p^2}$ is maximal if and only if

$$c_{p-1}(\alpha) = c_{p-2}(\alpha) = 0.$$ 

Assume $\alpha \in \mathbb{F}_p$. We make computer search on $D$ over $\mathbb{F}_{p^3}$ to find $G$ over $\mathbb{F}_{p^3}$ attains Serre’s bound by Corollary 25. To reduce the computational complexity, we use the numbers of rational points of $D$ over $\mathbb{F}_p$ and $\mathbb{F}_{p^2}$ to compute them over $\mathbb{F}_{p^3}$. We list the algorithm here, which induces from the theory of Zeta function; see 5.2. of [8] for example. Here we set $n_i = \#D(\mathbb{F}_{p^i})$ for $i = 1, 2, 3$.

Input $n_1, n_2$

$a_1 \leftarrow n_1 - p - 1$
$a_2 \leftarrow (n_2 - p^2 - 1 + a_1^2)/2$
$\omega_1, \ldots, \omega_4$ $\leftarrow$ roots of $x^4 + a_1 x^3 + a_2 x^2 + pa_1 x + p^2 = 0$
$v_3 \leftarrow p^3 + 1 - \sum_{i=1}^{4} \omega_i^3$

Output $v_3$

We implement it by KASH/KANT, and find curves attaining Serre’s bound.

Example 29. Edge’s sextic $G$ over $\mathbb{F}_{p^3}$ attains Serre’s bound when $(p, \alpha)$ is equal to $(67, 0)$, $(229, 110)$, $(787, 356)$, $(1021, 230)$, $(1153, 154)$, $(1229, 67)$, etc.

References


Division of Mathematics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192 Japan
E-mail address: kawakita@belle.shiga-med.ac.jp